移动首页 | 我读过的 | 世界名著 | 诺奖作品 |
国学名著 | 科幻名著 | 言情名著 | 恐怖名著 |
历史小说 | 武侠名著 | 教育名著 | 传记名著 |
章一
关于这类本体,我们所述应已足够。①所有哲学家无论在自然事物或在不动变事物均以诸对反为第一原理;但在一切第一原理之先,不该另有事物,所以这不该既是第一原理,而又从某事物得其演变;若从此说,如以“白”为第一原理,便应以白为白,无复更先于白之事物;可是这白却预拟为别一事物之演变,而这一底层事物又得先于“白”,这是荒谬的。但一切由对反所演生的事物例皆出于某一底层;那么诸对反必得在某处涵有此底层。本体并无对反,这不仅事实昭然,理知的思考也可加以证实。所以一切对反不能严格地称为第一原理;第一原理当异乎诸对反。
①此句语意应表示第十四卷另起论题,但第十四卷所论题旨与第十三卷并无明显差异。故叙里安诺不用此句为开卷语,别以第十三卷1086a21句为第十四卷开始。这两卷于柏拉图学派意式论与数论之批评,各章编次欠整齐,亦不无复沓;故后人推论亚氏先草成第十四卷,以后又扩充为第十三卷;后世两为编录。
可是,这些思想家把物质作为两对反之一,有些人②就以“不等”(他们认为“不等”即“众多”的本性)为元一之对反,而另一些人③则以众多为元一之对反。前者引用“不等之两”即“大与小”,来制数,后者则引用“众”来制数,惟照两家之说,均以一为怎是而由此制数。那位哲学家说“不等与元一”为要素时,以“不等”为“大与小”所组成的一个“两”,其意盖以“不等”或“大与小”为一个要素,①并未言明它们是在定义上为一而不是于数为一。他们于这些称为诸要素的原理,论叙颇为混淆,有些人②列举“大”与“小”与“元一”三者为数的要素,二为物质,一为形式;另有些人③列举“多与少”,因为“大与小”的本性只可应用于量度,不适于数;又一些人④列举“超过与被超过的”——即大小与多少的通性。从它们所可引起的某些后果上看来,这些各不相同的意见并无分别;他们所提供的说明既是抽象的,他们所发生的后果也是抽象问题,而各家所求以自圆其说者亦仅在避免抽象的疑难,——只有一点相异处是:若不以大与小为原理,而以超过与被超过为原理,则此类要素将先于2而制成列数;因为“超过与被超过”较之“大与小”为更普遍,列数也较2为更普遍。但他们只说其一义而不承认其另一义。
②指柏拉图。
③大约是指斯泮雪浦。
①“大与小”,柏拉图意中为一物,亦为一原理,即未定数。亚氏在这里承认此义,使之与元一相对;但他在其它章节中又将大与小当作两物而加以批评。
②包括柏拉图在内。
③不能肯定是那一位柏拉图学派。
④似指毕达哥拉斯学派。
另有些人⑤以“异”与“别”为一之对成,只有些人⑥以“众”为一〈单〉之对成。但,照他们所说“事物皆出于对反”而论,“不等”应为“等”之对,“异”应为“同”之对,“别”应为“本”之对,那么仍当以“众”对“一”为宜,然众一之为对犹不能尽免于訾议;因为多之对为少,众为多性,则其所对应是少性,这样“一”恰就转成为“少”了。
⑤似指某些毕达哥拉斯学派。
⑥似指斯泮雪浦。
“一”显然是一个计量。①在每一事例上必各有一个,本性分明的,底层事物,例如音乐〈音阶〉的单位为四分音程,量度的单位为一指或一脚②或类此者,韵律的单位为一节拍成一音节。相似地,就重力而论其单位为确定的某一重量。一切事例均由相同的方法以质计质,以量计量。(计量是不可区分的,于前者以级类论,于后者以感觉论。)“一”本身不是任何事物的本体。这是合理的;一为众之计量,而数为已计量了的众,亦即若干的一。所以这是自然的,一不是一个数,计量单位也不与诸计量混;因为计量单位与一均为计算的起点。计量必常与其所计量之一切为相同事物,例如事物为马群则其计量必为“马”,若为人群则亦必以“人”为计。假如他们是一人,一马,与一神则其计量也许是“活物”,而他们的计数将是三个活物。倘事物为“人”,为“白的”,为“散步”,这就不能成数,因为这些同属那个主题,这主题其数只一,可是这些〈以不同类别的云谓而论〉也可计算其类别之数,或其它名称的数。
①参看卷Q章六;卷I章一。
②δαJGKMHI原义为“手指”,用于计量时一指约当今四分之三寸。释法云“翻译名义集”数量篇述古印度度量:一弓合四肘,一肘合二十四指节;一肘合一尺八寸;则一“指节”亦为四分之三寸。此与希腊古度量相符。
那些人以“不等”为一物,以“两”为“大与小”的一个未定的组合,其立说殊不可能,也不足为概然的事实。因为(甲)多与少之于数,大与小之于量度,犹如奇与偶,直与曲,粗糙与平滑,只是数与量度及其它事物之演变与属性,并非那些事物之底层。又,(乙)除了这一错误以外,“大与小”等必须相关于某些事物;但关系范畴后于质与量,作为实是或本体只算是其中最微末的一类;我们已说过,这里所相关的不是物质而只是量的一个属性,因为事物必须保持某种显明的本性,才能凭此本性物质对于另一些事物造成一般关系,或与另一些事物之部分或其类别造成关系。凡以或大或小、或多或少与另一些事物建立关系者,必其本身具有多或少、大或小,或一般与另些事物肇致关系的本性。关系为最微末的本体或实是,其标志可以在这里见到,量有增减,质有改换,处有移动,本体有生灭,只是关系无生灭,无动变。①关系没有本身的变化;与之相关的事物若于量有所变更时,一事物,本身虽不变化,其关系便将一回儿“较大”,一回儿“较小”,又一回儿“相等”。(丙)每一事物,也可说每一本体,在各自涉及的范畴上其物质必然为潛在;但关系既不潛在地也不实现地成为本体。
①参看卷K,章十二1068a7—9一句,亚氏于十范畴中只举其七。这里只举其五,作用与被作用复被略去不论,盖以这两范畴与动变相合,不须别举。
于是,这是奇怪的,或宁是不可能的,硬把非本体先于本体而且安置为本体内的一个要素;因为所有各范畴均后于本体。又(丁)要素,不是自己为之要素的那事物之云谓,但多与少无论分开或合拢,均表明为数,长与短之于线,阔与狭之于面亦然。现在倘有一众〈相当多的一个数〉,其中常函有“少”这一项,例如2(2不能作为多,因为,倘2算作“多”则1应将是“少”了),而这数又须另有相对的一项代表绝对的“多”,例如10(若更无较10为大的数),或10,000.从这方面看来,数怎能由少与多组成,或是两者均表明这数,或是两都不该;但在事实上,一个数只能指称两项中的这一项或另一项。
章二
我们必须研究永恒事物可否由诸要素组成。若然,则它们将具有物质;因为一切由要素组成之事物,均为物质与形式的复合体。于是事物虽拟之为永恒存在,若彼曾有所组成,则无论其久已生成或现在生成,均必有所组成,而一切组合生成之事物必出于其潜在之事物(如它原无此潜能就不得生成,也不会包含这样的诸要素),既然潜在事物可实现亦可不实现——这虽已实现成永恒的数,但既含有物质,便当与一切含有物质要素的事物一样,仍是可能不存在的;由兹而言,任何年代古老的数可能失其存在,生存了一天的数也可能失其存在;那么不管其存在时间可以无限止地延长,凡可能不存在的,就总可以失其存在。那么,它们就不能是永恒的,我们曾已有机会在别篇中①说明一切可能消失的均非永恒。我们现今所说倘普遍地是真确的——凡非实现的本体均非永恒——假如要素为本体底层之物质,一切永恒本体之内,均不能存有这样的组成要素。
①参看卷C,1050b7全节。此处称“别篇”,似指ZHC这三卷,原先可能别有独立篇名。
有些人①列叙与“元一”共为作用的要素是“未定之两”,并以此责难“不等”之说引起迷惑,其所持理由可谓充分;可是他们虽因此得以解除以“不等”为关系,以“关系”为要素所由引起的疑难,但这些思想家们用那些要素来制作数,无论这是意式数或是数学数,还得于其它方面遭遇一样的诽议。
①似指齐诺克拉底。
许多原因使他们导向这样的解释,尤其是他们措置疑难的方式太古老了。他们认为若不违离而且否定巴门尼德的名言,一切现存事物均应为“元一”,亦即“绝对实是”。
“非是永不会被证明其存在为实是”②
他们认为事物若确乎不止于“一”,这就必须证明非是为是;因为只有这样,诸事物才能由“实是”与“另一些事物”组合而成“多”。③
②见第尔士编“戋篇”7,并参看柏拉图“色埃德托”180E.③参看柏拉图“诡辩家”237A,241D,256E.
但,第一,实是若具有多项命意(因为这有时是本体,有时指某一素质,有时指某一量,又有时指其它的范畴),而非是若被假定为不存在,则一切现存事物所成之一将是什么一类的“一”?是否以诸本体为一,或以诸演变和相似的其它范畴为一,或各范畴合而为一——这样,“这个”与“如此”,与“这么多”以及其它诸范畴,凡指称某一级实是的,悉归于“一”?但这正奇怪或竟是不可能的,世上出现了单独的一物〈非是〉竟就带出了这么多的部分,其一部分为一个现存的“这个那个”,又一部分为一个“如此如彼”,又一部分为一个“那么大小”,又一部分为一个“此处彼处”。
第二,事物究竟由那一类的“非是与是”来组成?因为跟着“是”一样“非是”也有多项命意;“不是人”意指不是其一本体,“非直”意指某素质之非是,“非三肘长”意指某一量度之非是。于是那一类的“是与非是”之结合才使事物得成众多?这一思想家①以之与“是”相结合而使现存事物得其众多性之“非是”为虚假与虚假性。这就象几何学家将“不是一尺长”假定为一尺长,而举称这就是我们必须将一些虚假作成为假定的理由。几何学家既不以任何虚假事物为假定(因为前提与推断不相及),事物所由创成或化人的“非是”也不是这样命意。但因“非是”在诸范畴中为例便各有不同,而且除此之外,虚假与潜能均属“非是”创造实际出于潛在性的非是;人由非人而潛在地是人者生成,白由非白而潛在地是白者生成,至于所生成者为一为多殊无与乎非是。
①指柏拉图:参看“诡辩家”237A,240.柏拉图以虚假为“非是”,亚氏所举诸非是不尽符柏拉图原义。
明白地,问题在于其命意为本体之实是怎样成为多;因为创成的数与线与体,原就有许多。可是这正奇怪,于实是之为“什么”就可以专要考询其安得成多,却不考询实是之为质为量者又安得成多。当然“未定之两”或“大与小”不会是白有两种,或色,味有多种,形状有多种的原因;若说这些也出于“未定之两”或“大与小”,那么色、味等也将成为数与单位了。但,他们若研究到其它这些范畴,也就可以明白本体的众多性之原因何在了;各范畴诸实是的众多性之原因,正是这相同的①或可相比拟的事物。在寻取实是与元一的对反以便由此对反和实是与元一共同生成事物,他们进入相同的迷途而指向于那个相关词项(即“不等”),“关系”并非实是与元一的对成,也不是它们的否定,而只是象本体与素质一样,为实是之一个类别。他们应该询问这一问题,何以相关词项有许多而不止一个。照说,他们已研究到何以在第一个1〈原一〉之外还有许多1,却并不进而考询在这“不等”之外另有许多“不等”。然而他们迳就应用了这许多“不等”而常说着大与小,多与少(由此制数),长与短(由此制线),阔与狭(由此制面),深与浅(由此制体);他们还说着很多种类的关系词。这些关系事物的众多性又由何而来呢?
①参看卷A,章五;此处所指为“物质”或潛在,与下文1089b16行相符;又与28行相符,亦指“底层”。
于是,在我们来说,这必须为每一有所是的事物预拟其各有所潜在;持有了这样主张的人还须宣称那个潜在地是一个“这个”,也潜在地是一个本体的,却并不由本身而成为实是——例如说这是“那个关系”(犹如说“那个质”),这既非潜在地为元一或实是,也不是元一与实是的否定,而仅是诸是中的一是。照我们已说过的意见,②他若要考询实是之何以有许多,不必更考询同范畴中实是之成多——何以有许多本体,何以有许多素质——他应该考询全部的实是何以有许多;有些实是为诸本体,有些为诸演变;有些为诸关系。在本体以外各范畴,还有另一问题涵存于众多性中。因为其它范畴不能脱离诸本体,正因为它们的底层为多,所以质与量也成为多;于每一级实是这就该具有某一些物质;只是这物质不能脱离本体。如果不将一事物看作一个“个体”又看作一般性格,①这可能在各个个别本体上解释明白“个体”之何以成多。诸本体何以不止是一而确乎为多,从这问题上所引起的困惑就在这里。
②参看上文1089a34.此节“他”指柏拉图或柏拉图学派。
①参看1086b13.
但,又,个体与量若有所不同,我们还没有知道现存事物如何成多以及为何成多,他们只说了量是怎么的多。因为一切“数”意指于量,一除了作为计量,或在量上为不可区分以外,其义亦为数。于是,假如那个量与“什么”〈本体〉各不相同,谁也还没有把那个“什么”何由成多与如何成多的问题向我们交代清楚;而若说那个“什么”与量相同,那么他又得面对许多不符事实之处了。
关于数,他们也可以把注意力放到这问题上,相信了这些是存在的,这有何价值。对于信奉意式的人,这提供了对某些种类现存事物的原因,因为每一数均为一意式,意式总是别事物成为实是之原因;让他们据有这样的假设。但因有鉴于意式论内涵的违碍之外而并不执持意式的人(所以他并不以意式论数),他所讨论的只是数学之数;②我们又何必相信他的陈述而承认意式数的存在,这样的数对于别的事物又有什么作用?说这样的数存在的人,既未主张这是任何事物的原因,我们确也未观察到它曾是任何事物的原因(他宁说这是一个只为自己而存在的独立实是);至于算术家的诸定理,则我们前曾说过,即便应用于可感觉事物也全部合适。①
②意指斯泮雪浦。
①参看卷M,章三全章,注意1077b17—22.
章三
至于那些人设想了意式之存在,并照他们的假定以意式为数——由于脱离实例而抽象设词的方法——他们假定了各普遍词项的一致性,进而解释数之必须存在。可是,他们的理由既不充实亦非可能,人们必不因为这些理由而相信数之存在为独立实是。再者,毕达哥拉斯学派看到许多可感觉事物具有数的属性,②便设想实事实物均为数,——不是说事物可用数来为之计算,而说事物就是数所组成。其故何在?在乐律,在天体,在其它事物上均见有数的属性。③那些说只有数学之数存在的人④,照他们自己的立论,本不该讲这一类道理,可是他们却常说这些可感觉事物不能作学术的主题。照我们前曾说过的,⑤我们确认这些就是学术的主题。数学对象显然不能离可感觉事物而独立存在;如果独在,则实体之中就见不到它们的属性了。在这一方面毕达哥拉斯学派并不引人反对;该被批评的只是他们用数来构成自然体,用无轻无重的事物构成有轻有重的事物,他们所说的天体,以及其它实物,不象是这个可感觉世界的事物。但那些以数为可分离的人,常认为“可感觉事物非真实”,而“数式才是真实的公理”,并诉之于性灵①以指陈数必须存在也必须独立于事物之外;于几何对象亦复相似。于是,这是明显的,与此相抗衡的数论②,其说既与之相背,我们现在也正要提出疑问,③数若不存在于可感觉事物之内,何以可感觉事物表现有数的属性,执持数为独在的人们均应该解答这个疑问。
②参看上文1090a4—7.
③参看卷A,989b29—990a29.
④指斯泮雪浦。
⑤参看卷M,章三。
①σαιFEι原义为“摇动”,如狗摇尾;拉丁译文作adblandinutur.一百五十年间四种英译本译法各不同,兹从特来屯尼克1933新译本,(增“GιFΨKJιF”)而译作“诉之于性灵”。
②指1090a20—25,毕达哥拉斯数论。
③1090a29.
有些人看到点为线之端亦为线之限,线之于面,面之于体亦然,因而认为这些必是一类实物。所以,我们必须加以察核,其理由或甚薄弱。因为(一)极端只为这些事物的限度,自身并非本体。步行或运动一般地必有所终止,照他们的立论,这些也将各成为一“这个”,为一本体了。这是荒谬的。(二)就算这些也是本体,它们也应是这感觉世界上的本体;而他们的立论却正在想脱离这感觉世界。它们怎么能分离而得自在?
又,关于一切数与数学对象,我们倘仍以所论为意有未尽,可慎重提出这一问题,先天数〈数学对象〉之于后天数〈几何对象〉,它们互不相为资益。对于那些专想维持数学对象之存在的人①,假如数不存在,空间量度也不会存在,而空是量度若不存在,灵魂与可感觉实体却会得存在。但从所见世界的真象看来,自然体系并不象一篇各幕缺少联系的坏剧本。对于相信意式的人,这疑难是被忽略了;他们由物质与数制作空间量度,由数2制线,更毫不怀疑地,由3制面,由4制体,②——或者他们另用别的数来制作,这也并无分别。然而这些量度将会成为意式么,或其存在的情况又如何,对于事物又有何作用?这些全无作用,正象数学对象之全无作用一样。人们若不想干涉数学对象来创立自己的原则,他就难以从他们的任何定理得其实用,但这并不难设想一些随意的假定,由此纺出一长串的结论。
①指斯泮雪浦;参看卷Z章二,卷A章十二。
②意大利学派的数学和几何演算都是用卵石来排列着进行的。二粒卵石可定一条线,三粒可定一个三角形(面),四粒可定一个锥形四面体(立体)。所以2,3,4实际是决定线、面、体三者所必需的最少的卵石数。