正在加载......
律历下
开皇二十年,袁充奏日长影短,高祖因以历事付皇太子,遣更研详著日长之候。太子征天下历算之士,咸集于东宫。刘焯以太子新立,复增修其书,名曰《皇极历》,驳正胄玄之短。太子颇嘉之,未获考验。焯为太学博士,负其精博,志解胄玄之印,官不满意,又称疾罢归。至仁寿四年,焯言胄玄之误于皇太子:
其一曰,张胄玄所上见行历,日月交食,星度见留,虽未尽善,得其大较,官至五品,诚无所愧。但因人成事,非其实录,就而讨论,违舛甚众。
其二曰,胄玄弦望晦朔,违古且疏,气节闰候,乖天爽命。时不从子半,晨前别为后日。日躔莫悟缓急,月逡妄为两种,月度之转,辄遗盈缩,交会之际,意造气差。七曜之行,不循其道,月星之度,行无出入,应黄反赤,当近更远,亏食乖准,阴阳无法。星端不协,珠璧不同,盈缩失伦,行度愆序。去极晷漏,应有而无,食分先后,弥为烦碎。测今不审,考古莫通,立术之疏,不可纪极。今随事纠驳,凡五百三十六条。
其三曰,胄玄以开皇五年,与李文琮于张宾历行之后,本州贡举,即赍所造历拟以上应。其历在乡阳流布,散写甚多,今所见行,与焯前历不异。玄前拟献,年将六十,非是忽迫仓卒始为,何故至京未几,即变同焯历,与旧悬殊?焯作于前,玄献于后,舍己从人,异同暗会。且孝孙因焯,胄玄后附孝孙,历术之文,又皆是孝孙所作,则元本偷窃,事甚分明。恐胄玄推讳,故依前历为驳,凡七十五条,并前历本俱上。
其四曰,玄为史官,自奏亏食,前后所上,多与历违,今算其乖舛有一十三事。又前与太史令刘晖等校其疏密五十四事,云五十三条新。计后为历应密于旧,见用算推,更疏于本。今纠发并前,凡四十四条。
其五曰,胄玄于历,未为精通。然孝孙初造,皆有意,徵天推步,事必出生,不是空文,徒为臆断。
其六曰,焯以开皇三年,奉敕修造,顾循记注,自许精微,秦汉以来,无所与让。寻圣人之迹,悟曩哲之心,测七曜之行,得三光之度,正诸气朔,成一历象,会通今古,符允经传,稽于庶类,信而有徵。胄玄所违,焯法皆合,胄玄所阙,今则尽有,隐括始终,谓为总备。
仍上启曰:”自木铎寝声,绪言成烬,群生荡析,诸夏沸腾,曲技云浮,畴官雨绝,历纪废坏,千百年矣。焯以庸鄙,谬荷甄擢,专精艺业,耽玩数象,自力群儒之下,冀睹圣人之意。开皇之初,奉敕修撰,性不谐物,功不克终,犹被胄玄窃为己法,未能尽妙,协时多爽,尸官乱日,实玷皇猷。请征胄玄答,验其长短。“
焯又造历家同异,名曰《稽极》。大业元年,著作郎王邵、诸葛颍二人,因入侍宴,言刘焯善历,推步精审,证引阳明。帝曰:”知之久矣。“仍下其书与胄玄参校。胄玄驳难云:”焯历有岁率、月率,而立定朔,月有三大、三小。案岁率、月率者,平朔之章岁、章月也。以平朔之率而求定朔,值三小者,犹以减三五为十四;值三大者,增三五为十六也。校其理实,并非十五之正。故张衡及何承天创有此意,为难者执数以校其率,率皆自败,故不克成。今焯为定朔,则须除其平率,然后为可。“互相驳难,是非不决,焯又罢归。
四年,驾幸汾阳宫,太史奏曰:”日食无效。“帝召焯,欲行其历。袁允方幸于帝,左右胄玄,共排焯历,又会焯死,历竟不行。术士咸称其妙,故录其术云。甲子元,距大隋仁寿四年甲子积一百万八千八百四十算。
岁率,六百七十六。
月率,八千三百六十一。
朔日法,千二百四十二。
朔实,三万六千六百七十七。
旬周,六十。
朔辰,百三半。
日干元,五十二。
日限,十一。
盈泛,十六。
亏总,十七。
推经朔术:
置入元距所求年,月率乘之,如岁率而一,为积月,不满为闰衰。朔实乘积月,满朔日法得一,为积日,不满为朔余。旬周去积日,不尽为日,即所求年天正经朔日及余。
求上下弦、望:加经朔日七、余四百七十五小,即上弦经日及余。又加得望、下弦及后月朔。就径求望者,加日十四、余九百五十半;下弦加日二十二、余百八十三大;后月朔加日二十九,余六百五十九。每月加闰衰二十大,即各其月闰衰也。
凡月建子为天正,建丑为地正,建寅为人正。即以人正为正月,统求所起,本于天正。若建岁历从正月始,气、候、月、星,所值节度,虽有前却,并亦随之。其前地正为十二月,天正为十一月,并诸气度皆属往年。其日之初,亦从星起,晨前多少,俱归昨日。若气在夜半之后,量影以后日为正。诸因加者,各以其余减法,残者为全余。若所因之余满全余以上,皆增全一而加之,减其全余;即因余少于全余者,不增全加,皆得所求。分度亦尔。凡日不全为余,积以成余者曰秒;度不全为分,积以成分者曰篾;其有不成秒曰麽,不成篾曰幺。其分、余、秒、篾,皆一为小,二为半,三为大,四为全,加满全者从一。其三分者,一为少,二为太。若加者,秒篾成法,从分余。分余满法从日度一,日度有所满,则从去之。而日命以日辰者,满旬周则亦除;命有连分、余、秒、篾者,亦随全而从去。其日度虽满,而分秒不满者,未可从去,仍依本数。若减者,秒篾不足,减分余一,加法而减之;分余不足减者,加所从去或前日度乃减之。即其名有总,而日度全及分余共者,须相加除,当皆连全及分余共加除之。若须相乘,有分余者,母必通全内子,乘讫报除。或分余相并,母不同者,子乘而并之。母相乘为法,其并,满法从一为全,此即齐同之也。既除为分余而有不成,若例有秒篾,法乘而又法除,得秒篾数。已为秒篾及正有分余,而所不成不复须者,须过半从一,无半弃之。若分余其母不等,须变相通,以彼所法之母乘此分余,而此母除之,得彼所须之子。所有秒篾者,亦法乘,不满此母,又除而得其数。麽幺亦然。其所除去而有不尽全,则谓之不尽,亦曰不如。其不成全,全乃为不满分、余、秒、篾,更曰不成。凡以数相减,而有小及半、太须相加减,同于分余法者,皆以其母三四除其气度日法,以半及太、大本率二三乘之,少、小即须因所除之数随其分余而加减焉。秋分后春分前为盈泛,春分后秋分前为亏总,须取其数。泛总为名,指用其时,春分为主,亏日分后,盈日分前。凡所不见,皆放于此。
气日法,四万六千六百四十四。
岁数,千七百三万六千四百六十六半。
度准,三百三十八。
约率,九。
气辰,三千八百八十七。
余通,八百九十七。
秒法,四十八。
麽法,五。
推气术:
半闰衰乘朔实,又度准乘朔余,加之,如约率而一,所得满气日法为去经朔日,不满为气余。以去经朔日,即天正月冬至恆日定余,乃加夜数之半者,减日一,满者因前,皆为定日。命日甲子算外,即定冬至日。其余如半气辰千九百四十三半以下者,为气加子半后也;过以上,先加此数,乃气辰而一,命以辰算外,即气所在辰。十二辰外,为子初以后余也。又十二乘辰余:
四为小太,亦曰少;五为半步;六为半;
七为半太;八为大少,亦曰太;九为太;
十为大太;十一为穷辰少。
其又不成法者,半以上为进,以下为退。退以配前为强,进以配后为弱。即初不成一而有退者,谓之沾辰;初成十一而有进者,谓之穷辰。未旦其名有重者,则于间可以加之,命辰通用其余,辨日分辰而判诸日。因别亦皆准此。因冬至有减日者,还加之。每加日十五、余万一百九十二、秒三十七,即各次气恆日及余。诸月齐其闰衰,如求冬至法,亦即其月中气恆日去经朔数。其求后月节气恆日,如次之求前节者减之。
推每日迟速数术:
见求所在气陟降率,并后气率半之,以日限乘而泛总除,得气末率。又日限乘二率相减之残,泛总除,为总差。其总差亦日限乘而泛总除,为别差。率前少者,以总差减末率,为初率,乃别差加之;前多者,即以总差加末率,皆为气初日陟降数。以别差前多者日减,前少者日加初数,得每日数。所历推定气日随算其数,陟加、降减其迟速,为各迟速数。其后气无同率及有数同者,皆因前末,以末数为初率,加总差为末率,及差渐加初率,为每日数,通计其秒,调而御之。
求月朔弦望应平会日所入迟速:各置其经余为辰,以入气辰减之,乃日限乘日,日内辰为入限,以乘其气前多之末率,前少之初率,日限而一,为总率。其前多者,入限减泛总之残,乘总差,泛总而一,为入差,并于总差,入限乘,倍日限除,加以总率;前少者,入限自乘再乘别差,日限自乘,倍而除,亦加总率,皆为总数。乃以陟加、降减其气迟速数为定,即速加、迟减其经余,各其月平会日所入迟速定日及余。
求每日所入先后:各置其气躔衰与衰总,皆以余通乘之,所乃躔衰如陟降率;衰总如迟速数,亦如求迟速法,即得每所入先后及定数。
求定气:其每日所入先后数即为气余,其所历日皆以先加之,以后减之,随算其日,通准其余,满一恆气,即为二至后一气之数。以加二气,如法用别其日而命之。又算其次,每相加命,各得其定气日及余也。亦以其先后已通者,先减后加其恆气,即次气定日及余。亦因别其日,命以甲子,各得所求。
求土王:距四立各四气外所入先后加减,满二十二日、余八千一百五十四、秒十、麽二。除所满日外,即土始王日。
求侯日:定气即初候日也。三除恆气,各为平候日。余亦以所入先后数为气余,所历之日皆以先加、后减,随计其日,通准其余,每满其平,以加气日而命之,即得次候日。亦算其次,每相加命,又得末候及次气日。
倍夜半之漏,得夜刻也。以减百刻,不尽为昼刻。每减昼刻五,以加夜刻,即其昼为日见、夜为不见刻数。刻分以百为母。
求日出入辰刻:十二除百刻,得辰刻数,为法。半不见刻以半辰加之,为日出实,又加日出见刻,为日入实。如法而一,命子算外,即所在辰,不满法,为刻及分。
求辰前余数:气、朔日法乘夜半刻,百而一,即其余也。
求每日刻差:每气准为十五日,全刻二百二十五为法。其二至各前后于二分,而数因相加减,间皆六气;各尽于四立,为三气。至与前日为一,乃每日增太;又各二气,每日增少;其末之气,每日增少之小,而末六日,不加而裁焉。二望至前后一气之末日,终于十少;二气初日,稍增为十二半,终于二十太,三气初日,二十一,终于三十少;四立初日,三十一,终于三十五太;五气亦少增,初日三十六太,终四十一少;末气初日,四十一少,终于四十二。每气前后累算其数,又百八十乘为实,各泛总乘法而除,得其刻差。随而加减夜刻而半之,各得入气夜定刻。其分后十五日外,累算尽日,乃副置之,百八十乘,亏总除,为其所因数。以减上位,不尽为所加也。不全日者,随辰率之。
求晨去中星:加周度一,各昏去中星减之,不尽为晨去度。
求每日度差:准日因增加裁,累算所得,百四十三之,四百而一,亦百八十乘,泛总除,为度差数。满转法为度,随日加减,各得所求。分后气间,亦求准外与前求刻,至前加减,皆因日数逆算求之。亦可因至向背其刻,冬减夏加,而度冬加夏减。若至前,以入气减气间,不尽者,因后气而反之,以不尽日累算乘除所定,从后气而逆以加减,皆得其数。此但略校其总,若精存于《稽极》云。
转终日,二十七;余,千二百五十五。
终法,二千二百六十三。
终实,六万二千三百五十六。
终全余,千八。
转法,五十二。
篾法,八百九十七。
闰限,六百七十六。
推入转术:终实去积日,不尽,以终法乘而又去,不如终实者,满终法得一日,不满为余,即其年天正经朔夜半入转日及余。
求次日:加一日,每日满转终则去之,其二十八日者加全余为夜半入初日余。
求弦望:皆因朔加其经日,各得夜半所入日余。
求次月:加大月二日,小月一日,皆及全余,亦其夜半所入。
求经辰所入朔弦望:经余变从转,不成为秒,加其夜半所入,皆其辰入日及余。因朔辰所入,每加日七、余八百六十五、秒千一百六十大,秒满日法成余,亦得上弦。望、下弦、次朔经辰所入径求者,加望日十四、余千七百三十一、秒千七十九半,下弦日二十二、余三百三十四、秒九百九十八小,次朔日一、余二千二百八、秒九百一十七。亦朔望各增日一,减其全余,望五百三十一、秒百六十二半,朔五十四、秒三百二十五。
求月平应会日所入:以月朔弦望会日所入迟速定数,亦变从转余,乃速加、迟减其经辰所入余,即各平会所入日余。
推朔弦望定日术:
各以月平会所入之日加减限,限并后限而半之,为通率;又二限相减,为限衰。前多者,以入余减终法,残乘限衰,终法而一,并于限衰而半之;前少者,半入余乘限衰,亦终法而一,减限衰。皆加通率,入余乘之,日法而一,所得为平会加减限数。其限数又别从转余为变余,朓减、朒加本入余。限前多者,朓以减与未减,朒以加与未加,皆减终法,并而半之,以乘限衰;前少者,亦朓朒各并二入余,半之,以乘限衰;皆终法而一,加于通率,变余乘之,日法而一。所得以朓减、朒加限数,加减朓朒积而定朓朒。乃朓减、朒加其平会日所入余,满若不足进退之,即朔弦望定日及余。不满晨前数者,借减日算,命甲子算外,各其日也。不减与减,朔日立算与后月同。若俱无立算者,月大,其定朔算后加所借减算。闰衰限满闰限,定朔无中气者为闰,满之前后,在分前若近春分后、秋分前,而或月有二中者,皆量置其朔,不必依定。其后无同限者,亦因前多以通率数为半衰而减之,二前少,即为通率。其加减变余进退日者,分为一日,随余初末如法求之,所得并以加减限数。凡分余秒篾,事非因旧,文不著母者,皆十为法。若法当求数,用相加减,而更不过通远,率少数微者,则不须算。其入七日余二千一十一,十四日余千七百五十九,二十一日余千五百七,二十八日始终余以下为初数,各减终法以上为末数。其初末数皆加减相返,其要各为九分,初则七日八分,十四日七分,二十一日六分,二十八日五分;末则七日一分,十四日二分,二十一日三分,二十八日四分。虽初稍弱而末微强,余差止一,理势兼举,皆今有转差,各随其数。若恆算所求,七日与二十一日得初衰数,而末初加隐而不显,且数与平行正等。亦初末有数而恆算所无,其十四日、二十八日既初末数存,而虚衰亦显,其数当去,恆法不见。
求朔弦望之辰所加:
定余半朔辰五十一大以下,为加子过;以上,加此数,乃朔辰而一,亦命以子,十二算外,又加子初。以后其求入辰强弱,如气。
求入辰法度:
度法,四万六千六百四十四。
周数,千七百三万七千七十六。
周分,万二千一十六。
转,十三。
篾,三百五十五。
周差,六百九半。
在日谓之余通,在度谓之篾法,亦气为日法、为度法,随事名异,其数本同。女末接虚,谓之周分。变周从转,谓之转。晨昏所距日在黄道中,准度赤道计之。
斗二十六牛八女十二虚十危十七室十六壁九
北方玄武七宿,九十八度。
奎十六娄十二胃十四昴十一毕十六觜二参九
西方白虎七宿,八十度。
井三十三鬼四柳十五星七张十八翼十八轸十七
南方硃雀七宿,百一十二度。
角十二亢九氐十五房五心五尾十八箕十一
东方苍龙七宿,七十五度。
前皆赤道度,其数常定,纮带天中,仪极攸准。
推黄道术:
准冬至所在为赤道度,后于赤道四度为限。初数九十七,每限增一,以终百七。其三度少弱,平。乃初限百九,亦每限增一,终百一十九,春分所在。因百一十九每限损一,又终百九。亦三度少弱,平。乃初限百七,每限损一,终九十七,夏至所在。又加冬至后法,得秋分、冬至所在数。各以数乘其限度,百八而一,累而总之,即皆黄道度也。度有分者,前后辈之,宿有前却,度亦依体,数逐差迁,道不常定,准令为度,见步天行,岁久差多,随术而变。
斗二十四牛七女十一半虚十危十七室十七壁十
北方九十六度半。
奎十七娄十三胃十五昴十一毕十五半觜二参九
西方八十二度半。
井三十鬼四柳十四半星七张十七翼十九轸十八
南方一百九度半。
角十三亢十氐十六房五心五尾十七箕十半
东方七十六度半。
前皆黄道度,步日所行。月与五星出入,循此。
推月道所行度术:
准交定前后所在度半之,亦于赤道四度为限,初十一,每限损一,以终于一。其三度强,平。乃初限数一,每限增一,亦终十一,为交所在。即因十一,每限损一,以终于一。亦三度强,平。又初限数一,每限增一,终于十一,复至交半,返前表里。仍因十一增损,如道得后交及交半数。各积其数,百八十而一,即道所行每与黄道差数。其月在表,半后交前,损减增加;交后半前,损加增减于黄道。其月在里,各返之,即得月道所行度。其限未尽四度,以所直行数乖入度,四而一。若月在黄道度,增损于黄道之表里,不正当于其极,可每日准去黄道度,增损于黄道,而计去赤道之远近,准上黄道之率以求之,遁伏相消,朓朒互补,则可知也。积交差多,随交为正。其五星先候,在月表里出入之渐,又格以黄仪,准求其限。若不可推明者,依黄道命度。
推日度术:
置入元距所求年岁数乘之,为积实,周数去之,不尽者,满度法得积度,不满为分。以冬至余减分;命积度以黄道起于虚一宿次除之,不满宿算外,即所求年天正冬至夜半日所在度及分。
求年天正定朔度:
以定朔日至冬至每日所入先后余为分,日为度,加分以减冬至度,即天正定朔夜半日在所度分。亦去朔日乘衰总已通者,以至前定气除之,又如上求差加以并去朔日乃减度,亦即天正定朔日所在度。皆日为度,余为分。其所入先后及衰总用增损者,皆分前增、分后损其平日之度。
求次日:
每日所入先后分增损度,以加定朔度,得夜半。
求弦望:
去定朔每日所入分,累而增损去定朔日,乃加定朔度,亦得其夜半。
求次月:
历算大月三十日,小月二十九日,每日所入先后分增损其月,以加前朔度,即各夜半所在至虚去周分。
求朔弦望辰所加:
各以度准乘定余,约率而一,为平分。又定余乘其日所入先后分,日法而一,乃增损其平分,以加其夜半,即各辰所加。其分皆篾法约之,为转分,不成为篾。凡朔辰所加者,皆为合朔日月同度。
推月而与日同度术:
各以朔平会加减限数加减朓朒,为平会朓朒。以加减定朔,度准乘,约率除,以加减定朔辰所加日度,即平会辰日所在。又平会余乘度准,约率除,减其辰所在,为平会夜半日所在。乃以四百六十四半乘平会余,亦以周差乘,朔实除,从之,以减夜半日所在,即月平会夜半所在。三十七半乘平会余,增其所减,以加减半,得月平会辰平行度。五百二乘朓棵,亦以周差乘,朔实除而从之,朓减、朒加其平行,即月定朔辰所在度,而与日同。若即以平会朓朒所得分加减平会辰所在,亦得同度。