正在加载......
章八
最 好首先决定什么是数的差异,假如一也有差异,则一的差异又是什么。单位的差异必须求之于量或质上;单位在这些上面似乎均有差异。但数作为数论,则在量上各 有差异。假如单位真有量差,则虽是有一样多单位的两数也将有量差。又在这些具有量差的单位中是那第一单位为较大或较小,抑是第二单位在或增或减?所有这些 都是不合理的拟议。它们也不能在质上相异。因为对于诸单位不能系以属性;即便对于列数,质也只能是跟从量而为之系属。③又,1与未定之2均不能使数发生质 别,因为1本无质而未定之2只有量性;这一实是只具有使事物成为多的性能。假如事实诚不若是,他们该早在论题开始时就有说明,并决定何以单位的差异必须存 在,他们既未能先为说明,则他们所谓差异究将何所指呢?
③数之质别有素数或组合数,平面(二次)或立体数(三次),这些质别皆为量变所成的属性。参看卷Q,章十四1020b3—8.
于 是明显地,假如意式是数,诸单位就并非全可相通,在〈前述〉两个方式中也不能说它们全不相通。①但其他某些人关于数的议论方式也未为正确。那些不主于意 式,也不以意式为某些数列的人,他们认为世上存在有数理对象而列数为现存万物中的基本实是,“本1”又为列数之起点。这是悖解的:照他们的说法,在诸1中 有一“原1”〈第一个1〉,却在诸2中并不建立“原2”〈第一个2〉,诸3中也没有“原3”〈第一个3〉。②同样的理由应该适用于所有各数。关于数,假使 事实正是这样,人们就会得想到惟有数学之数实际存在,而1并非起点(因这样一类的1将异于其它诸1;而2,也将援例存在有第一个2与诸2另作一类,以下顺 序各数也相似)。但,假令1正为万物起点,则关于数理之实义,毋宁以柏拉图之说为近真,“原2”与“原3”便或当为理所必有,而各数亦必互不相通。反之, 人苟欲依从此说,则又不能免于吾人上所述③若干不符事实之结论。但,两说必据其一,若两不可据,则数便不能脱离于事物而存在。
①参看1080a18—20,23—35.
②20行某人指斯泮雪浦;他不主于意式数而以“本1”为通式要理(本因),亚氏于此诋其瑕疵。
③参看1080b37—1083a17.
这也是明显的,这观念的第三翻版④最为拙劣——这就是意式之数与数学之数为相同之说。这一说合有两个错误。(一)数学之数不能是这一类的数,只有持此主张的人杜撰了某些特殊的线索才能纺织起来。(二)主张意式数的人们所面对着的一切后果他也得接受。
④指齐诺克拉底之说,参看1080b22.
毕 达哥拉斯学派的数论,较之上述各家较少迷惑,但他们也颇自立异。他们不把数当作独立自在的事物,自然解除了许多疑难的后果;但他们又以实体为列数所成而且 实体便是列数,这却是不可能的。这样来说明不可区分的空间量度是不真确的;这类量度无论怎么多怎么少,诸1是没有量度的;一个量度怎能由不可区分物来组 成?算术之数终当由抽象诸1来组成。但,这些思想家把数合同于实物;至少他们是把实物当作列数所组成,于是就把数学命题按上去。
于是,数若为一自存的实物,这就必需在前述诸方式中的一式上存在,如果不能在前述的①任何一式上存在,数就显然不会具有那样的性质,那些性质是主张数为独立事物的人替它按上去的。
①见于1080a15—b36.
又, 是否每个单位都得之于“平衡了的大与小”抑或一个由“小”来另一个由“大”来?(甲)若为后一式,每一事物既不尽备所有的要素,其中各单位也不会没有差 异;因为其中有一为大,另一为与大相对反的小。在“本3”中的诸单位又如何安排?其中有一畸另单位。但也许正是这缘由,他们以“本一”为诸奇数中的中间单 位。②(乙)但两单位若都是平衡了的大与小,那作为整个一件事物的2又怎样由大与小组成?或是如何与其单位相异?又,单位是先于2;因为这消失,2也随之 消失。于是1将是一个意式的意式,这在2以前先生成。那么,这从何生成?不是从“未定之2”,因为“未定之2”的作用是在使“倍”。
②参看第尔士辑“先苏格拉底”(第三版)卷一,346,17—22,又270,18.
再 者,数必须是无限或是有限(因为这些思想家认为数能独立存在,并就应该在两老中确定其一①)。清楚地,这不能是无限;因为无限数是既非奇数又非偶数,而列 数生成非奇必偶,非偶必奇。其一法,当1加之于一个偶数时,则生成一个奇数;另一法,当1被2连乘时,就生成2的倍增数;又一法当2的倍增数,被奇数所乘 时就产生其它的偶数。②又,假如每一意式是某些事物的意式,而数为意式,无限数本身将是某事物(或是可感觉事物或是其它事物)的一个意式。可是这个本身就 不合理,而照他们的理论也未必可能,至少是照他们的意式安排应为不可能。
①如果数是独立存在的,其实现必须是一个无限或是一个有限数。亚氏自己的主张是数只能潜在地为无限,其所实现必为一有限数。
② 柏拉图“巴门尼德”144A以1与2为奇偶起点由1与2相加得3;用此三数,(1)以偶乘偶,(2)奇乘奇,(3)奇乘偶,(4)偶乘奇,四法制作列数。 (3)(4)两法实际相同。由(1)与(3)(4)可得一切偶数:2的倍增数即乘方数2,4,8,16.其中所缺偶数由 2×3=6,2×5=10,4×3=12,2×7=14……来递补。但(2)法不能得一切奇数。素数如5,7等均非乘法所能制成。柏拉图以加法制成第一个 素数3.实际其它素数均须由偶数加一制成。
但,数若为有限,则其极限在那里?关于这个,不仅该举出事实,还得说明理由。倘照有些人①所说 数 以10为终,则通式之为数,也就仅止于10了;例如3为“人本”,又以何数为“马本”?作为事物之本的若干数列遂终于10.这必须是在这限度内的一个数, 因为只有这些数才是本体,才是意式。可是这些数目很快就用尽了;动物形式的种类着实超过这些数目。同时,这是清楚的,如依此而以意式之“3”为“人本”, 其它诸3亦当如兹(在同数内的诸)亦当相似),②这样将是无限数的人众;假如每个3均为一个意式,则诸3将悉成“人本”,如其不然,诸3也得是一般人众。 又,假如小数为大数的一部分(姑以同数内的诸单位为可相通),于是倘以“本4”为“马”或“白”或其它任何事物的意式,则若人为2时,便当以人为马的一个 部分。这也是悖解的,可有10的意式,而不得有11与以下各数的意式。又,某些事物碰巧是,或也实际是没有通式的;何以这些没有通式?我们认为通式不是事 物之原因。又,说是由1至10的数系较之本10更应作为实物与通式,这也悖解。本10是作为整体而生成的,至于1至10的数系,则未见其作为整体而生成。 他们却先假定了1至10为一个完整的数系。至少,他们曾在10限以内创造了好些衍生物——例如虚空,比例,奇数以及类此的其它各项。他们将动静,善恶一类 事物列为肇始原理,而将其它事物归之于数。①所以他们把奇性合之于1;因为如以3作奇数之本性则5又何如?②
①以十为数之终其旨出于毕达哥拉斯学派,此处所指包括柏拉图在内(参看“物学”206b32),大约斯泮雪浦亦从此旨。
②此括弧内支句费解。罗宾(Robin)解为在“意式4”内之3,与涵于意式5内之4中的3亦相似,逐级类推亦相似(参看罗宾:“柏拉图意式论在亚里士多德以后之发展”352页)。
① “虚空”由未定之2衍生,可参看乌弗拉斯托“哲学”(312,18—313,3)。“动”亦出于“未定之2”见本书卷A章九,卷K章九。“静”自然由1衍 生,可不烦参证。此处所举各例中实际仅“比例”才真正是数的衍生物。叙里安诺诠论比例三式1∶2∶3为算术比例;1∶2∶4为几何比例;2∶3∶6为音乐 比例。此三式所举数目皆在10以内。
②数论学派以1为具有奇性,3,5等为奇数而无奇性,得其奇性于1;如7之为奇数,并不因3因5以为奇,惟因1以取其奇性。
又,对于空间量体及类此的事物,他们都用有定限的数来说明;例如,第一,不可分线,③其次2,以及其它;这些都进到10而终止。④
③参看卷A,992a22,又卷N,章三。
④参看卷N,1090b21—24,数论以1合于点(即不可分线),2合于线,3合于面,4合于立体,而1,2,3,4则合成10,为数之终,一切空间量体尽涵于中。
再 者,假如数能独立自存,人们可以请问那一数目为先,——1或3或2?假如数是组合的,自当以1为先于,但普遍性与形式若为先于,那么列数便当为先于;因为 诸1只是列数的物质材料,而数才是为之作用的形式。在某一涵义上,直角为先于锐角,因为直角有定限,而锐角犹未定,故于定义上为先;在另一涵义上,则锐角 为先于,因为锐角是直角部分,直角被区分则成诸锐角。作为物质,则锐角元素与单位为先于;但于形式与由定义所昭示的本体而论,则直角与“物质和形式结合起 来的整体”应为先于;因为综合实体虽在生成过程上为后,却是较接近于形式与定义。那么,1安得为起点?他们答复说,因为1是不可区分的;但普遍性与个别性 或元素均不可区分。而作为起点则有“始于定义”与“在时间上为始”的分别。那么,1在那一方面为起点?上曾言及,直角可被认为先于锐角,锐角也可说是先于 直角,那么直角与锐角均可当作1看。他们使1在两方面都成为起点。但这是不可能的。因为普遍性是由形式或本体以成一,而元素则由物质以成一,或由部分以成 一。两者(数与单位)各可为一——实际上两个单位①均各潜在(至少,照他们所说不同的数由不同种类的单位组成,亦就是说数不是一堆,而各自一个整体,这就 该是这样),而不是完全的实现。他们所以陷入错误的原因是他们同时由数理立场又由普遍定义出发,进行研究,这样(甲)从数理出发,他们以1为点,当作第一 原理;因为单位是一个没有位置的点。(他们象旁的人②也曾做过的那样,把最小的部分按装成为事物。)于是“1”成为数的物质要素,同时也就先于2;而在2 当作一个整数,当作一个形式时,则1又为后于。然而,(乙)因为他们正在探索普遍性,遂又把“1”表现为列数形式涵义的一个部分。但这些特性不能在同时属 之同一事物。
①这里亚氏以2为例,其中两个1,在2实现为一个整数时,均各转成为潜在。
②指原子(不可分物)论派。
假 如“本1”必须是无定位的单元(因为这除了是原理外,并不异于它1),2是可区分的,但1则不可区分,1之于“本1”较之于2将更为相切近,但,1如切近 于“本1”,“本1”之于1也将较之于2为相切近;那么2中的各单位必然先于2.然而他们否认这个;至少,他们曾说是2先创生。
又,假如“本2”是一个整体,“本3”也是一个整体,两者合成为2〈两个整体〉。于是,这个“2”所从产生的那两者又当是何物呢?
章九
因为列数间不是接触而是串联,例如在2与3中的各单位之间什么都没有,人们可以请问这些于本1是否也如此紧跟着,紧跟着本1的应是2抑或2中的某一个单位。①
在 后于数的各级事物——线,面,体——也会遭遇相似的迷难。有些人②由“大与小”的各品种构制这些,例如由长短制线,由阔狭制面,由深浅制体;那些都是大与 小的各个品种。这类几何事物之肇始原理〈第一原理〉,相当于列数之肇始原理,各家所说不同。在这些问题上面,常见有许多不切实的寓言与理当引起的矛盾。 (一)若非阔狭也成为长短,几何各级事物便将互相分离。(但阔狭若合于长短,面将合于线,而体合于面;③还有角度与图形以及类此诸事物又怎样能解释?)又 (二)在数这方面同样的情形也得遭遇;因为“长短”等是量度的诸属性,而量度并不由这些组成,正象线不由“曲直”组成或体不由平滑与粗糙组成一样。④
①看本卷第七章:1081a17—35.
②大约也包括柏拉图在内。
③1085a7—19,参看卷A,992a10—19.
④参看卷A,992b1—7又卷N,1088a15—21.
所 有这些观点所遇的困难与科属内的品种在论及普遍性时所遇的困难是共通的,例如这参于个别动物之中的是否为“意式动物”抑其它“动物”。假如普遍性不脱离于 可感觉事物,这原不会有何困难;若照有些人的主张一与列数皆相分离,困难就不易解决;这所谓“不易”便是“不可能”。因为当我们想到2中之一或一般数目中 的一,我们所想的正是意式之一抑或其它的一?①
①1085a24—31,旁涉意式论之一般迷难,与上文不甚贯串。
于是,有 些 人由这类物质创制几何量体,另有些人②由点来创制,——他们认为点不是1而是与1相似的事物——也由其它材料如与“1”不同的“众”来创制;这些原理也得 遭遇同样严重的困难。因为这些物质若相同,则线,面,体将相同;由同样元素所成事物亦必相同。若说物质不止一样,其一为线之物质,另一为面,又一为体,那 么这些物质或为互涵,或不互涵,同样的结果还得产生;因为这样,面就当或含有线或便自己成了线。
②大概另指斯泮雪浦。柏拉图与齐诺克拉底并不置重于点(参看卷A章九,章五)。
再 者,数何能由“单与众”组成,他们并未试作解释;可是不管他们作何解释,那些主张“由1与未定之2”来制数的人③所面对着的诸驳议,他们也得接受。其一说 是由普遍地云谓着的“众”而不由某一特殊的“众”来制数,另一说则由某一特殊的众即第一个众来制数;照后一说,2为第一个众。①所以两说实际上并无重要差 别,相同的困难跟踪着这些理论——由这些来制数,其方法为如何,搀杂或排列或混和或生殖?以及其它诸问题。在各种疑难之中,人们可以独执这一问题,“假如 每一单位为1,1从何来?”当然,并非每个1都是“本1”。于是诸1必须是从“本1”与“众”或众的一部分来。要说单位是出于众多,这不可能,因为这是不 可区分的;由众的一部分来制造1也有许多不合理处;因为(甲)每一部分必须是不可区分的(否则所取的这一部分将仍还是众,而这将是可区分的),而“单与 众”就不成其为两要素了;因为各个单位不是从“单与众”创生的。(乙)执持这种主张的人不做旁的事,却预拟了另一个数;因为它的不可区分物所组成的众就是 一个数。②
③指柏拉图与齐诺克拉底。
①亚氏在这里仍将“未定之2”当作2与本2来批评柏拉图学派之说。
②这里说明朗些:(甲)众的不可区分部分就不成为“众多”而是“单一”。这样,“众多”为诸一所构成,这就不能与“单位之一”相配而成为制数两要素。(乙)由众多制数等于说“数出于数”,也等于什么都没有说。
又, 我们必须依照这个理论再研究数是有限抑无限的问题。③起初似乎有一个众,其本身为有限,由此“有限之众”与“一”共同创生有限数的诸单位,而另有一个众则 是绝对之众,也是无限之众;于是试问用那一类的众多作为与元一配合的要素?人们也可以相似地询问到“点”,那是他们用以创制几何量体的要素。因为这当然不 是惟一的一个点;无论如何请他们说明其它各个点各由什么来制成。当然不是由“本点”加上一些距离来制作其它各点。因为数是不可区分之一所组成,但几何量体 则不然,所以也不能象由众这个要素的不可区分之诸部分来制成一〈单位〉那样,说要由距离的不可区分之诸部分来制成点。①
③参看1083b36.
①点不能含有距离的要素;而且距离的任何一段仍还是距离,不能成点。一在“众”中可作为一个部分,点在线内不能作一个部分。
于 是,这些反对意见以及类此的其它意见显明了数与空间量体不能脱离事物而独立。又,关于数论各家立说的纷歧,这就是其中必有错误的表征,这些错处引起了混 乱。那些认为只有数理对象能脱离可感觉事物而独立的人②,看到通式的虚妄与其所引起的困惑,已经放弃了意式之数而转向于数学之数。然而,那些想同时维持通 式与数的人假设了这些原理,③却看不到数学数存在于意式数之外,他们④把意式数在理论上合一于数学数,而实际上则消除了数学数;因为他们所建立的一些特殊 的假设,都与一般的数理不符。最初提出通式的人假定数是通式时,也承认有数理对象存在,⑤他是自然地将两者分开的。所以他们都有某些方面是真确的,但全部 而论都不免于错误。他们的立论不相符合而相冲突,这就证实了其中必有不是之处。错误就在他们的假设与原理。坏木料总难制成好家具,爱比卡包谟⑥说过,“才 出口,人就知道此言有误”。
②指斯泮雪浦。
③这些原硬,指“一与未定之二”,可参看第七章。
④指齐诺克拉底。
⑤柏拉图。
⑥第尔士编“残篇”14.
关 于数,我们所提出的问题和所得的结论已足够(那些已信服了的人,可在后更为之详解而益坚其所信,至于尚不信服的人也就再不会有所信服)。①关于第一原理与 第一原因与元素,那些专谈可感觉本体的各家之说,一部分已在我们的物学著述中②说过,一部分也不属于我们现在的研究范围;但于那些认为在可感觉物体以外, 还有其它本体的诸家之说,这必需在讨论过上述各家以后,接着予以考虑。因为有些人说意式与数就是这类〈超感觉〉本体,而这些要素就是实在事物的要素与原 理,关于这些我们必须研究他们说了些什么,所说的内容其实义又如何。
①叙里安诺将以下各节编入卷N.
②见于“物学”卷一,第四至六章;“说天”卷三,第三至四章,“成坏论”卷一,第一章。
那 些专主于数而于数又主于数学之数的人,必须在后另论;③但是关于那些相信意式的人,大家可以同时观测他们思想的途径和他们所投入的困惑。他们把意式制成为 “普遍”,同时又把意式当作可分离的“个别”来处理。这样是不可能的,这曾已为之辩明。④那些人既以本体外离于可感觉事物,他们就不得不使那作为普遍的本 体又自备有个体的特性。他们想到了可感觉世界的形形色色,尽在消逝之中,惟其普遍理念离异了万物,然后可得保存于人间意识之中。我们先已说过⑤苏格拉底曾 用定义〈以求在万变中探取其不变之真理,〉启发了这样的理论,但是他所始创的“普遍”并不与“个别”相分离;在这里他的思想是正确的。结果是已明白的了, 若无普遍性则事物必莫得而认取,世上亦无以积累其知识,关于意式只在它脱离事物这一点上,引起驳议。可是,他的继承者却认为若要在流行不息的感觉本体以外 建立任何本体,就必需把普遍理念脱出感觉事物而使这些以普遍性为之云谓的本体独立存在,这也就使它们“既成为普遍而又还是个别”。照我们上述的看法,这就 是意式论本身的惩结。
③指斯泮雪浦,参看卷N,1090a7—15,20—b20.④参看卷B,1003a7—17.
⑤见于1078b17—30.
章十
让我们对于相信意式的人提出一个共有的疑难,这一疑难在我们先时列举诸问题时曾已说明。①我们若不象个别事物那样假定诸本体为可分离而独立存在,那么我们就消灭了我们自己所意想的“本体”;但,我们若将本体形成为可分离的,则它们的要素与它们的原理该又如何?
①卷B,999b24—1000a4,1003a5—17.
假 如诸本体不是普遍而是个别的,(甲)实物与其要素将为数相同,(乙)要素也就不可能得其认识。因为(甲)试使言语中的音节为诸本体,而使它们的字母作为本 体的要素;既然诸音节不是形式相同的普遍,不是一个类名,而各自成为一个个体,则βα就只能有一个,其它音节也只能各有一个(又他们〈柏拉图学派〉于每一 意式实是也认为各成一个整体)。倘诸音节皆为唯一个体,则组成它们的各部分也将是唯一的;于是α不能超过一个,依据同样的论点,也不能有多数的相同音节存 在,而其它诸字母也各只能有一个。然而若说这样是对的,那么字母以外就没有别的了,所有的仅为字母而已。(乙)又,要素也将无从取得其认识,因为它们不是 普遍的,而知识却在于认取事物之普遍性。知识必须依凭于实证和定义,这就是知识具有普遍性的说明;若不是每一个三角的诸内角均等于两直角,我们就不作这个 “三角的诸内角等于两直角”的论断,若不是“凡人均为动物”,我们也不作这个人是一个动物的论断。但,诸原理若均为普遍,则由此原理所组成的诸本体亦当均 为普遍,或是非本体将先于本体;因为普遍不是一个本体,而要素或原理却是普遍的,要素或原理先于其所主的事物。
当他们正由要素组成意式的同时,又宣称意式脱离那与之形式相同的本体而为一个独立实是,所有这些疑难就自然地跟着发生。
但是,如以言语要素为例,若这并不必需要有一个“本α”与一个“本β”而尽可以有许多α许多β,则由此就可以有无数相似的音节。
依 据一切知识悉属普遍之说,事物之诸原理亦当为普遍性而不是各个独立本体,而实际引致了我们上所述各论点中最大困惑者,便是此说,然此说虽则在某一涵义上为 不合,在另一涵义上讲还是真实的。“知识”类于动字“知”,具有两项命意,其一为潜能另一为实现。作为潜能,这就是普遍而未定限的物质,所相涉者皆为无所 专指的普遍;迨其实现则既为一有定的“这个”,这就只能是“这个”已经确定的个体了。视觉所见各个颜色就是颜色而已,视觉忽然见到了那普遍颜色,这只是出 于偶然。文法家所考察的这个个别的α就是一个α而已。假如诸原理必须是普遍的,则由普遍原理所推演的诸事物,例如在论理实证中,①亦必为普遍;若然如此, 则一切事物将悉无可分离的独立存在〈自性〉——亦即一切均无本体。但明显地,知识之一义为普遍,另一义则非普遍。
①罗斯注释:“论理实证”(απHδEιξιI)必须在第一格(“解析后编”卷一,第十四章),在这格中普遍前提应作出普遍结论。